C语言经典题目及解题思路

2009-11-06 17:04:29   4850

1、
【问题描述】梯有N阶,上楼可以一步上一阶,也可以一步上二阶。编写一个程序,计算共有多少中不同的走法
【思路】看到此题目容易想到用递归的方法来做,因为递归是一种描述和解决结构自相似问题的基本算法,而N阶楼梯问题和N-1阶、N-2阶的结构完全相同。
     解决递归问题可以分为两个部分,第一部分是一些特殊(基础)情况,用直接法解,即始基;第二部分与原问题相似,可用类似的方法解决(即递归),但比原问题的规模要小。
     定义int count(int n)函数求解N阶楼梯的走法,基于上述思想,可知:

  • N阶楼梯问题的始基是N==1、N==2两种情况;
  • 上楼可以一步上一阶,也可以一步上二阶,当上一阶时问题规模变为N-1,当上二阶时问题规模变为N-2,所以总的情况为count(n-1)+count(n-2)。

【代码】

cCODE:
#include
#include
int count(int n);
/*count how many ways to climb up N steps stairs.*/
int main (int argc, char *argv[])
{
    int n,ct;
    printf("please input n:\n");
    scanf("%d",&n);
    ct=count(n);
    printf("there are %d ways to climb up N steps stairs!\n",ct);
    system("PAUSE");
    return 0;        
}
int count(int n)
{
    if(1==n)
        return 1;
    else if(2==n)
        return 2;
    else return count(n-1)+count(n-2);
}
【程序输入输出】for example
please input n:
5
there are 8 ways to climb up N steps stairs!

2、
【问题描述】Armstrong数具有如下特征:一个n位数等于其个位数的n次方之和。如:
153=13+53+33
1634=14+64+34+44
找出2、3、4、5位的所有Armstrong数。
【思路】看到此题我第一反应是用枚举法,给定m(10<=m<=99999),首先判断m的位数n,然后判断它是否等于各位数的n次方之和。

  • 定义函数int judgeDigit(int m),用于判断给定参数m的位数;
  • 定义函数int judgeEqual(int m,int n),其中m为给定的数,n为m的位数,用于判断m是否等于各位数的n次方之和。

【代码】

cCODE:

#include
#include
#include

int judgeDigit(int m);
/*This function return the digit of parameter m*/

void judgeEqual(int m,int n);
/*parameter m is a integer,parameter n is the digit of m,this function is used to judge m whether is a Armstrong integer and output it*/

int main (int argc, char **argv)
{
    int i,len;
    printf("All 2 digit to 5 digit Armstrong integers are following:\n");
    for(i=10;i<=99999;i++)
    {
        len=judgeDigit(i);
        judgeEqual(i,len);               
    }
    printf("\n");
    system("PAUSE");
    return 0;
}
int judgeDigit(int m)
{/*This function return the digit of parameter m*/
    int len=0;
    do
    {
        ++len;
        m=m/10;
    }while(m);
    return len;
}

void judgeEqual(int m,int n)
{/*parameter m is a integer,parameter n is the digit of m,this function is used to judge m whether is a Armstrong integer and output it*/
    int j,temp=m,sum=0;
    for(j=1;j<=n;j++)
    {
        sum+=(int)(pow(temp%10,n));
        temp=temp/10;
    }
    if(m==sum)/*if m is equal to sum,that is to say m is a Armstrong integer*/
        printf("%d\t",m);
}
【程序输入输出】
no input;
output:
All 2 digit to 5 digit Armstrong integers are following:
153    370     371     407     1634    8208    9474    54748   92727   93084
注:用gcc调试就得不到153这个结果,但windows下用vc6.0就可以得到。不解中,这是编译器问题还是程序问题?
3、
【问题描述】将1,2,3,4,5,6,7,8,9共9个数分成三组,组成3个三位数,且使这3个三位数构成1:2:3的比例,例如:3个三位数192,384,576满足以上条件.192:384:576=1:2:3。试求出所有满足条件的3个三位数。

【思路】1~9组成的最小三位数是123,最大的是987,由于要满足1:2:3的关系,最小的那个数应该不到于987/3=329。这样的话第一个数的变化范围是123~329,将这里面的数分别乘2、乘3,然后判断这三个数是否符合要求,即这三个数是否由1~9组成,而且各个数字不能相同。
     即对每个数n(123<=n<=329)用枚举法。

  • 定义函数int judge(int n),用于判断整数n的各位数字是否相同,如果有想同的就返回0;否则返回1;
  • 对每个数n(123<=n<=329),2*n,3*n调用judge()函数用于判断这三个数是否由1~9组成且各个数字不相同;
  • 判断n,2*n,3*n这三个数中的各位数是否相同,所以对数n*1000*1000+2*n*1000+3*n调用judge()判断。

所以(judge(n)==0||judge(2*n)==0||judge(3*n)==0||judge(n*1000+2*n*100+3*n)==0)为真的话,即其中给定的n不符合要求。其实只要(judge(n*1000+2*n*100+3*n)==0)这一个条件即可,因为它包含了前面两种情况。   
  caution:其实要判断这三个数是否由1~9组成且各个数组不相同,即这三个数的各位数是否覆盖了1~9,只要判断各位数字的积是否等于9!且各位数字的和是否等于45。
【代码】

cCODE:
#include
#include

int judge(int n);

int main (int argc, char **argv)
{
    int l,m,n,p,q;
    for(l=123;l<=329;l++)
    {
        m=2*l,n=3*l;
        p=l*1000+m,q=p*1000+n;
        if(judge(q)==0)
        //判断l、m、n是否符合要求。如果不符合就跳出本次循环,进入下次循环
            continue;
        printf("%d,%d,%d\n",l,m,n);
    }
    system("PAUSE");
    return 0;
}

int judge(int n)
{//用于判断整数n的各位数字是否相同,如果有想同的就返回0;否则返回1
    int num[10],i,j,len=0,temp=n;
    do
    {
        ++len;
        temp=temp/10;
    }while(temp);//求出n的位数
    for(i=1;i<=len;i++)
    {//将n的各位数字存入num[],并判断是否存在0及相同的数字,如果存在就返回0
        if((num=n%10)==0)
            return 0;
        n=n/10;
        for(j=1;j             if(num[j]==num)
                return 0;
    }
    return 1;
}


cCODE:来自一位网友youshuang,即用判断各位数字的积是否等于9!且各位数字的和是否等于45。)
#include

bool judge( int a, int b, int c )
{
    char tmp_buf[ 10 ];
    sprintf( tmp_buf, "%d%d%d", a, b, c );

    int nTimeResult = 1;
    int nSumResult = 0;
    for ( int i = 0; i < 9; i++ )
    {
        nTimeResult *= ( tmp_buf[ i ] - '0' );
        nSumResult += ( tmp_buf[ i ] - '0' );
    }

    return ( ( nTimeResult == 362880 ) && ( nSumResult == 45 ) );
}

int main()
{
    for ( int i = 123; i <= 329; i++ )
    {
        if ( judge( i, i * 2, i * 3 ) )
        {
            printf( "%d, %d, %d \n", i, i * 2, i * 3 );
        }
    }
    return 0;
}
【程序输入输出】
no input;
output:
192,384,576
219,438,657
273,546,819
327,654,981

4、
【问题描述】和尚挑水
某寺庙里7个和尚:轮流挑水,为了和其他任务不能冲突,各人将有空天数列出如下表:
和尚1: 星期二,四;
和尚2: 星期一,六;
和尚3: 星期三,日;
和尚4: 星期五;
和尚5: 星期一,四,六;
和尚6: 星期二,五;
和尚7: 星期三,六,日;
请将所有合理的挑水时间安排表
【思路】用回朔法求解(递归方式实现,当然也可以用迭代方式)。用结构体存储和尚的信息(空闲时间、是否已经挑过水标记)回朔法即每进行一步,都试图在当前部分解的基础上扩大该部分解。扩大时,首先检查扩大后是否违反了约束条件,若不违反,则扩大之,然后继续在此基础上按照类似的方法进行,直至成为完整解;若违反,则放弃该步以及它所能生成的部分解,然后按照类似的方法尝试其他可能的扩大方式,直到尝试了所有的扩大方式。  
【代码】
/*用于标记和尚周内是否已经工作过,flag=0表示没挑过水,flag=1表示已经挑过水*/

}monk[8];

int x[8],sum=0;/*sum用于统计共有多少种方案*/

int main (int argc, char **argv)
{
        int i,j;        
        for(i=1;i<=7;i++)
        {/*初始化和尚的空闲时间,初始化时和尚全部没挑过水即flag都为0*/
                printf("请输入和尚%d的空闲时间:",i);
                for(j=1;j<=7;j++)
                {
                        scanf("%d",&monk.spare[j]);
                }
                monk.flag=0;
        }
        backtrack(1);        
        printf("共有%d种方案\n",sum);
}

void backtrack(int n)
{/*函数功能:回朔求解第n天至第7天的解(即第n~7天分别安排和尚几)*/
        int j;
        if(n>7)
        {
                sum++;
                printf("方案%d:\n",sum);
                for(j=1;j<=7;j++)
                {                        
                        printf("星期%d和尚%d挑水\n",j,x[j]);
                }               
                printf("\n");
        }
        else
        {
                for(j=1;j<=7;j++)
                {
                        x[n]=j;
                        if(monk[j].flag==0&&monk[j].spare[n]==1)
                        {//判断和尚j是否已经挑过水及和尚星期n是否有空
                                monk[j].flag=1;        
                                backtrack(n+1);        
                                monk[j].flag=0;                                                
                        }                                       
                }        
                                       
        }
}
cCODE:
#include
#include
void backtrack(int n);
/*函数功能:回朔求解第n天至第7天的解(即第n~7天分别安排和尚几)*/
struct st
{
        int spare[8];
/*存储和尚的空闲时间,spare=0表示星期i没有空闲,spare=1表示星期i空闲,其中spare[0]不用*/

        int flag;

【程序输入输出】
input:
请输入和尚1的空闲时间:0 1 0 1 0 0 0
请输入和尚2的空闲时间:1 0 0 0 0 1 0
请输入和尚3的空闲时间:0 0 1 0 0 0 1
请输入和尚4的空闲时间:0 0 0 0 1 0 0
请输入和尚5的空闲时间:1 0 0 1 0 1 0
请输入和尚6的空闲时间:0 1 0 0 1 0 0
请输入和尚7的空闲时间:0 0 1 0 0 1 1
output:
方案1:
星期1和尚2挑水
星期2和尚6挑水
星期3和尚3挑水
星期4和尚1挑水
星期5和尚4挑水
星期6和尚5挑水
星期7和尚7挑水

方案2:
星期1和尚2挑水
星期2和尚6挑水
星期3和尚7挑水
星期4和尚1挑水
星期5和尚4挑水
星期6和尚5挑水
星期7和尚3挑水

方案3:
星期1和尚5挑水
星期2和尚6挑水
星期3和尚3挑水
星期4和尚1挑水
星期5和尚4挑水
星期6和尚2挑水
星期7和尚7挑水

方案4:
星期1和尚5挑水
星期2和尚6挑水
星期3和尚7挑水
星期4和尚1挑水
星期5和尚4挑水
星期6和尚2挑水
星期7和尚3挑水

共有4种方案

5、
【问题描述】编写一个c程序,利用如下的格里高利公式求п的值,直到最后一项的值小于10-6为止。



【思路】由公式可以看出,每次n的值都会改变,这实际上就是迭代。
在程序设计中,迭代是经常使用的一种算法。使用迭代算法时要注意三个问题:

  • 迭代的初始值,如本题中sum的初始值为1n的初始值为1
  • 迭代公式,这是迭代的关键,如果有几个迭代公式,要特别注意这些迭代的顺序。如i+=1sum+=n的次序不能交换。
  • 迭代终止条件。一般用一个表达式或者计数器来判断迭代式是否应该终止。

    本题中迭代式中i+=1i的初始值为1sum+=n or sum-=n这通过一个标志变量flag来控制,flag==1sum+=nflag==0sum-=nsum的初始值为1。终止条件为

    【代码】

    cCODE:
    #include
    #include
    #include
    int main (int argc, char **argv)
    {   
        int flag=0,i=1;
        double n=1,sum=1;
        while(n>=pow(10,-6))
        {
             n=(double)1/(2*i+1);  
             i+=1;               
             if(1==flag)
             {
                 sum+=n;
                 flag=0;
             }
             else
             {
                 sum-=n;
                 flag=1;
             }                                       
        }
        sum*=4;
        printf("%lf",sum);                        
        system("PAUSE");
        return 0;
    }

    【程序输入输出】
    No input
    Output
    3.141595

    6、
    【问题描述】编写一个c程序,把下列数组延长到第50项:
    12510214285170341682
    【思路】由给定的数组元素可以看出偶数项是前一项的2倍,奇数项是前一项的2倍加1
    ,这是一中递推关系由前项推出后项,此题可以通过递推关系求解。
           递推解题和迭代解题是很相似的,递推是通过其他变量来演化,而迭代则是通过自身不断演化。递推法的运用也有三个关键:

    • 寻找递推关系。这是最重要的问题。递推关系有解析和非解析两种。解析递推关系是指能用一般数学公式描述的关系,也称递推公式。例如,本题的递推关系就是解析的。非解析递推关系是指不能用一般的数学公式描述的关系,这类关系的描述,也许本身就是一个过程。这类问题一般比较复杂,要结合其他的策略如分治法来解决。
    • 递推关系必须有始基,即最小子解(针对初始规模的子解的值),没有始基,递推计算就不能开始。例如本题a1=1就是始基。
    • 递推计算。即根据递推关系进行递推计算。递推计算可以由递归解析和非递归两种,递归计算是采用递归法,其形式是自顶向下,而非递归则是自底向上。本题是非递归的。

      解此题还须注意一点:数列的项必须定义为double型,因为延长到第50项如果定义为int or float型,数列的项会被截断即超过intfloat的表示范围。
      【代码】

      cCODE:
      #include
      #include

      int main (int argc, char **argv)
      {

          double a1=1,a=0;
          int i=1;
          while(i<=50)
          {
              printf("%.0lf ",a1); //'.0’ is just for do not output the decimal place
              i++;
              if(i%2==1)
                  a=2*a1+1;
              else
                  a=2*a1;
              a1=a;   
          }                           
          system("PAUSE");
          return 0;
      }
      【程序输入输出】
      No input
      Output
      1 2 5 10 21 42 85 .......(略)

      7、
      【问题描述】 用递归算法实现求一个数组中的最大元素。
      【思路】解决递归问题可以分为两个部分,第一部分是一些特殊(基础)情况,用直接法解,即始基;第二部分与原问题相似,可用类似的方法解决(即递归),但比原问题的规模要小。
           本题显然始基是a[0],关键是要找出递归关系,定义一个函数int max(int a[],int n),其中整型a[]是一个数组,n是数组长度减1,即数组最大有效元素的下标,因为c语言中数组元素下标是从0开始的。



      • 如果0==n,则a[0]就是最大的元素
      • 如果n>0,则先求出a[0]到a[n-1]的最大元素,然后与a[n]比较,较大者即为最大元素。其中a[0]到a[n-1]又可以用这种方式求,此时需要将a[0],a[1]...a[n-1]看成一个由n-1个元素构成的一维数组。

      【代码】

      cCODE:
      #include
      #include

      int max(int a[],int n);

      int main (int argc, char **argv)
      {   
          int a[]={1,2,3,4,5,6,7,6};
          printf("The max element is %d!\n",max(a,7));  
          /*caution:he length of a is 8,but the argument is 7*/              
          system("PAUSE");
          return 0;
      }

      int max(int a[],int n)
      {
          if(0==n)
              return a[n];
          else   
              return (a[n]>max(a,n-1)?a[n]:max(a,n-1));   
      }


      【程序输入输出】
      no input;
      output:
      The max element is 7!

      8、
      【问题描述】自然数的拆分:任何一个大于1的自然数N,总可以拆分成若干个自然数之和,并且有多种拆分方法。例如自然数5,可以有如下一些拆分方法:
      5=1+1+1+1+1
      5=1+1+1+2
      5=1+2+2
      5=1+4
      5=2+3
      【思路】自然数的拆分可以用回溯法。
      知识点回溯法解题时,对任一解的生产,一般采用逐步扩大解的方式。每进行一步,都试图在当前部分解的基础上扩大该部分解。扩大时,首先检查扩大后是否违反了约束条件,若不违反,则扩大之,然后继续在此基础上按照类似的方法进行,直至为完全解;若违反,则放弃该步以及它生成的部分解,然后按照类似的方法尝试其他可能的扩大方式,直到已经尝试了所有的扩大方式。
      回溯法解题通常包含以下三个步骤:

      • 针对所给问题,定义问题的解空间;如本题对5的拆分来说,1<=拆分的数<=5
      • 确定易于搜索的解空间结构;如本题对5的拆分来说,用x[]数组来存储解,每个数组元素的取值范围都是1<=拆分的数<=5,从1开始搜索直到5
      • 搜索解空间,并在搜索过程中用剪枝函数避免无效搜索。如本题对5的拆分来说,为了避免重复,x>=x[j](i>j),如x[]={2,3}满足条件而x[]={3,2}就不满足条件不是可行解即无效。
    • 回溯法通常有两种实现方式,一种是递归的方式,另一种是迭代的方式。在此就用递归方式,当然迭代的方式也可以。  
      【代码】

      cCODE:
      #include
      #include

      void splitN(int n,int m);//n是需要拆分的数,m是拆分的进度。
      int x[1024]={0},total=0 ;//total用于计数拆分的方法数,x[]用于存储解

      int main()
      {
          int n ;
          printf("please input the natural number n:");
          scanf("%d",&n);
          splitN(n,1);
          printf("There are %d ways to split natural number %d.\n",total,n);
          system("PAUSE");
          return 0 ;
      }

      void splitN(int n,int m)
      {//n是需要拆分的数,m是拆分的进度。
          int rest,i,j;   
          for(i=1;i<=n;i++)
          {//1开始尝试拆分。        
              if(i>=x[m-1])
              {//拆分的数大于或等于前一个从而保证不重复
                  x[m]=i ;//将这个数计入结果中。            
                  rest=n-i ;//剩下的数是n-i,如果已经没有剩下的了,并且进度(总的拆分个数)大于1,说明已经得到一个结果。
                  if(rest==0&&m>1)
                  {
                      total++;
                      printf("%d\t",total);
                      for(j=1;j                 {
                          printf("%d+",x[j]);
                      }
                      printf("%d\n",x[m]);
                  }
                  else
                  {
                      splitN(rest,m+1);//否则将剩下的数进行进度为m+1拆分。
                  }
                  x[m]=0;//取消本次结果,进行下一次拆分。环境恢复,即回溯
              }
          }
      }


      【程序输入输出】

      input:
      please input the natural number n:5
      output:
      1       1+1+1+1+1
      2       1+1+1+2
      3       1+1+3
      4       1+2+2
      5       1+4
      6       2+3
      There are 6 ways to split natural number 5

       

      原文:http://bbs.chinaunix.net/viewthread.php?tid=1493809

上一篇:没有了